Decision problems on unary probabilistic and quantum automata
نویسندگان
چکیده
It is well known that the emptiness problem for binary probabilistic automata and so for quantum automata is undecidable. We present the current status of the emptiness problems for unary probabilistic and quantum automata with connections with Skolem’s and positivity problems. We also introduce the concept of linear recurrence automata in order to show the connection naturally. Then, we also give possible generalizations of linear recurrence relations and automata on vectors.
منابع مشابه
Unary Probabilistic and Quantum Automata on Promise Problems
We continue the systematic investigation of probabilistic and quantum finite automata (PFAs and QFAs) on promise problems by focusing on unary languages. We show that bounded-error QFAs are more powerful than PFAs. But, in contrary to the binary problems, the computational powers of Las-Vegas QFAs and bounded-error PFAs are equivalent to deterministic finite automata (DFAs). Lastly, we present ...
متن کاملClassical Automata on Promise Problems
Promise problems were mainly studied in quantum automata theory. Here we focus on state complexity of classical automata for promise problems. First, it was known that there is a family of unary promise problems solvable by quantum automata by using a single qubit, but the number of states required by corresponding one-way deterministic automata cannot be bounded by a constant. For this family,...
متن کاملOn the Succinctness of Deterministic, Nondeterministic, Probabilistic and Quantum Finite Automata
We investigate the succinctness of several kinds of unary automata by studying their state complexity in accepting the family {Lm} of cyclic languages, where Lm = {a | k ∈ N}. In particular, we show that, for any m, the number of states necessary and sufficient for accepting the unary language Lm with isolated cut point on one-way probabilistic finite automata is p1 1 +p α2 2 + · · ·+ps s , wit...
متن کاملDecidable and Undecidable Problems about Quantum Automata
We study the following decision problem: is the language recognized by a quantum finite automaton empty or nonempty? We prove that this problem is decidable or undecidable depending on whether recognition is defined by strict or nonstrict thresholds. This result is in contrast with the corresponding situation for probabilistic finite automata, for which it is known that strict and nonstrict thr...
متن کاملUnary Pushdown Automata and Straight-Line Programs
We consider decision problems for deterministic pushdown automata over a unary alphabet (udpda, for short). Udpda are a simple computation model that accept exactly the unary regular languages, but can be exponentially more succinct than finite-state automata. We complete the complexity landscape for udpda by showing that emptiness (and thus universality) is P-hard, equivalence and compressed m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1610.01397 شماره
صفحات -
تاریخ انتشار 2016